Ontology Forecasting in Scientific Literature: Semantic Concepts Prediction Based on Innovation-Adoption Priors
نویسندگان
چکیده
The ontology engineering research community has focused for many years on supporting the creation, development and evolution of ontologies. Ontology forecasting, which aims at predicting semantic changes in an ontology, represents instead a new challenge. In this paper, we want to give a contribution to this novel endeavour by focusing on the task of forecasting semantic concepts in the research domain. Indeed, ontologies representing scientific disciplines contain only research topics that are already popular enough to be selected by human experts or automatic algorithms. They are thus unfit to support tasks which require the ability of describing and exploring the forefront of research, such as trend detection and horizon scanning. We address this issue by introducing the Semantic Innovation Forecast (SIF) model, which predicts new concepts of an ontology at time t+ 1, using only data available at time t. Our approach relies on lexical innovation and adoption information extracted from historical data. We evaluated the SIF model on a very large dataset consisting of over one million scientific papers belonging to the Computer Science domain: the outcomes show that the proposed approach offers a competitive boost in mean average precision-at-ten compared to the baselines when forecasting over 5 years.
منابع مشابه
Developing a BIM-based Spatial Ontology for Semantic Querying of 3D Property Information
With the growing dominance of complex and multi-level urban structures, current cadastral systems, which are often developed based on 2D representations, are not capable of providing unambiguous spatial information about urban properties. Therefore, the concept of 3D cadastre is proposed to support 3D digital representation of land and properties and facilitate the communication of legal owners...
متن کاملA Bayesian Methodology towards Automatic Ontology Mapping
This paper presents our ongoing effort on developing a principled methodology for automatic ontology mapping based on BayesOWL, a probabilistic framework we developed for modelling uncertainty in semantic web. The proposed method includes four components: 1) learning probabilities (priors about concepts, conditionals between subconcepts and superconcepts, and raw semantic similarities between c...
متن کاملModeling the Drivers of Eco-Innovation Adoption within Iranian Manufacturing Small and Medium-Sized Enterprises
There are various studies on the eco-innovation in the literature, but there is a scarcity of studies on the adoption and diffusion within manufacturing small and medium-size enterprises (SMEs). Drivers to adopt eco-innovations by manufacturing SMEs are required to be understood properly and be analyzed regarding the relationships among them. Hence, the purpose of this study is to identify the ...
متن کاملAn Executive Approach Based On the Production of Fuzzy Ontology Using the Semantic Web Rule Language Method (SWRL)
Today, the need to deal with ambiguous information in semantic web languages is increasing. Ontology is an important part of the W3C standards for the semantic web, used to define a conceptual standard vocabulary for the exchange of data between systems, the provision of reusable databases, and the facilitation of collaboration across multiple systems. However, classical ontology is not enough ...
متن کاملCentralized Clustering Method To Increase Accuracy In Ontology Matching Systems
Ontology is the main infrastructure of the Semantic Web which provides facilities for integration, searching and sharing of information on the web. Development of ontologies as the basis of semantic web and their heterogeneities have led to the existence of ontology matching. By emerging large-scale ontologies in real domain, the ontology matching systems faced with some problem like memory con...
متن کامل